Skip to main content

(3) Max determinant problem, Appendix

This is just a side talk and you can skip this. It is a detail about relationship between Fredholm equation of the second kind and the max determinant problem. The basic idea is as following.

  • The discrete form of Fredholm equation of the second kind is a matrix form (a linear system).
  • To get the limit of the discrete form, the dimension of matrix n goes to infinity.
  • The solution of linear system is obtained by a variant of Cramer's rule. This needs the determinant.
  • The absolute value of the determinant relates with the system's convergence. Therefore, the max determinant problem was interesting.

Fredholm equation of the second kind is as following.
Assume this equation as a discrete problem, the range a,b is n-subdivided, then
Set λ (b-a)/n = h, the coefficient of this equation becomes following.
When we let the subdivision number n to infinity, the dimension of matrix becomes infinite. When we solve this linear system by Cramer's rule, we need determinant. Please note that Fredholm didn't use Cramer's rule directory. We need a bit more details (Fredholm minor, Fredholm determinant), however, I just want to know what was the motivation of the max determinant problem. (Also I don't understand whole the Fredholm equation discussion.)

Comments

Popular posts from this blog

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the null spa

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um

Why parallelogram area is |ad-bc|?

Here is my question. The area of parallelogram is the difference of these two rectangles (red rectangle - blue rectangle). This is not intuitive for me. If you also think it is not so intuitive, you might interested in my slides. I try to explain this for hight school students. Slides:  A bit intuitive (for me) explanation of area of parallelogram  (to my site, external link) .